If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-3Y^2-12Y+6
We move all terms to the left:
-(-3Y^2-12Y+6)=0
We get rid of parentheses
3Y^2+12Y-6=0
a = 3; b = 12; c = -6;
Δ = b2-4ac
Δ = 122-4·3·(-6)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{6}}{2*3}=\frac{-12-6\sqrt{6}}{6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{6}}{2*3}=\frac{-12+6\sqrt{6}}{6} $
| x+6/4=5 | | x²+7=-8x | | x+6/12=5 | | x+2/3=7/3 | | 2.5x=147 | | (13+c)^7=-3 | | x+6÷12=5 | | x+(3x/100)=9.27 | | 9x^2-36+18=0 | | 1/x+1+4=21/x+1 | | (3x+10)-(2x-9)=43 | | 22=11/7y | | -3.41x=10.23 | | 2/4=w/10 | | x/2-11=17 | | 2x+3x+32=180 | | (x-3)^2(2x)=1.25x^2 | | 65+(3x-10)+(2x)=180 | | 0.5(x+1)-1.5=0.4 | | 7=x*5 | | 7a+4a-5=116 | | 14.3×7=x | | 1/2x+4=3x | | x*x+x*x=12 | | T(x)=-1/10(x-12)^2+10 | | y=-3*3+1 | | 16=2t+L | | 20x-7=5x | | 8(x-4))=-64 | | X+1/10=9/5+x-2/2 | | 5(x-2)=50=300 | | 58=60t-16t^2 |